A necessary and sufficient condition for primality, and its source
نویسندگان
چکیده
منابع مشابه
A generalization of a necessary and sufficient condition for primality due to Vantieghem
We present a family of congruences which hold if and only if a natural number n is prime. 2000 Mathematics Subject Classification: 11A51, 11A07. The subject of primality testing has been in the mathematical and general news recently, with the announcement [1] that there exists a polynomial-time algorithm to determine whether an integer p is prime or not. There are older deterministic primality ...
متن کاملA Necessary and Sufficient Condition for the Primality of Fermat Numbers
We examine primitive roots modulo the Fermat number Fm = 22 m + 1. We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n. This result is extended to primitive roots modulo twice a Fermat number.
متن کاملA Necessary and Sufficient Condition for Transcendency
As has been known for many years (see, e.g., K. Mahler, /. Reine Angew. Math., v. 166, 1932, pp. 118-150), a real or complex number f is transcendental if and only if the following condition is satisfied. To every positive number co there exists a positive integer n and an infinite sequence of distinct polynomials {p,(z)} = {pr + pr z + • • • + p z } at most of 0 1 n degree n with integral coef...
متن کاملA Necessary and Sufficient Condition for Peace∗
This paper examines the possibility for two contestants to agree on a peace settlement thereby avoiding a contest, in which each would exert a costly effort given the posterior distributions inferred from the negotiation. I find a necessary and sufficient condition of the prior distributions for there to exist a negotiation mechanism that admits a peace-ensuring perfect Bayesian equilibrium. Th...
متن کاملA necessary and sufficient minimality condition for uncertain systems
A necessary and sufficient condition is given for the exact reduction of systems modeled by linear fractional transformations (LFT’s) on structured operator sets. This condition is based on the existence of a rank-deficient solution to either of a pair of linear matrix inequalities which generalize Lyapunov equations; the notion of Gramians is thus also generalized to uncertain systems, as well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1972
ISSN: 0097-3165
DOI: 10.1016/0097-3165(72)90016-7